پارامترهای احاطه گری علامتدار در گرافها

thesis
abstract

گراف g را با مجموعه رئوس و یالهای v وe در نظر بگیرید توابع f و g را به ترتیب از v و e به {1-و1} تعریف کنید.تابع g را یک تابع k-زیراحاطه گر تام یالی علامتدار است هرگاه بر ای حداقل k یال از g مجموع وزن یالهای موجود در همسایگی یالی باز آنها بزرگتر یا مساوی یک باشد. مینیمم وزن g از g را عدد k-زیراحاطه ای تام یالی علامتدار تابع f را یک تابع بد گویند هرگاه بازای هر راس از g مجموع وزن رئوس موجود در همسایگی باز آنها کوچکتر یا مساوی یک باشد. مینیمم وزن f را عدد تصمیم منفی گویند.تابع h از e به {1-و0و1} تابع k -زیراحاطه گر یالی منفی است هرگاه بر ای حداقل k یال از g مجموع وزن یالهای موجود در همسایگی یالی آنها بزرگتر یا مساوی یک باشد. مینیمم وزن h از g عدد k -زیراحاطه ای یالی منفی است.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

نکاتی در خصوص پایداری احاطه گر رومن علامتدارتام در گرافها

چکیده :فرض کنیم ‌ یک گراف ساده و متناهی با مجموعه رئوس است. یک تابع احاطه گر رومن علامتدار تام روی گراف یک تابع مانند است بطوریکه: الف) برای هر ، ب) هر رأس با ویژگی مجاور با حداقل یک رأس با است. وزن یک برای تابع برابر تعریف می شود. عدد احاطه گر رومن علامتدار تام برای را که با نمایش می دهیم برابر می نیمم وزن تمام ها روی است. عدد پایداری احاطه گر رومن علامتدار تام در گراف که با نمایش داده می شود ...

full text

احاطه گری رنگین کمان در گرافها

به نظر می رسداساس مجموعه های احاطه گردربازی شطرنج باشد وقتی هدف احاطه کردن مربع های مختلف صفحه با مهره ای خاص باشد.حال دراحاطه گری رنگین کمان مجموعه ای از رنگ ها را به رئوس یک گراف نسبت میدهیم به طوری که اگر به راسی تهی نسبت دادیم رئوس مجاور همه ی رنگهاراداشته باشد. در ادامه مجموعه های احاطه گردرضربهای دکارتی گرافها بیان شده وبعد احاطه گری رنگین کمان را برای کلاس هایی از گرافها مانند گراف خورشی...

احاطه کننده رنگی در گرافها

ما ارتباط بین مسئل? افراز خوش? سالم و مسئل? احاطه کننده رنگی را مطالعه می کنیم.

عدد احاطه کننده موضعی در گرافها

بدست اوردن مجموعه های احاطع کننده های موضعی در گرافها وبدست اوردن مینیمم انمدازه ان در چند گراف خاص

عدد احاطه گر علامت دار در گرافها

در این پایان نامه عدد احاطه گر علامت دار راسی (یالی) معرفی می شود و مقدار ان برای بعضی از گرافها محاسبه می گردد. همچنین وجود کرانهایی را برای عدد احاطه گر علامت دار ، اثبات می کنیم . سپس عدد احاطه گر علامت دار اجباری راسی را تعریف کرده و مقدار ان را برای بعضی از گرافها بدست می اوریم و در پایان مفهوم ان را به یالها تعمیم می دهیم.

15 صفحه اول

اعداد زیرتقسیم احاطه ای در گرافها

مجموعهs از رئوس گراف gرا یک مجوعه احاطه گر تام نامند هرگاه هر رأس درv(g) با حداقل یک رأس از s مجاور باشد. مینیمم تعداد اعضای یک مجموعه احاطه گر تام را عدد احاطه ای نامیده و با?_(t ) (g) نشان می دهند. مجموعه s را یک مجموعه احاطه گر همبند مضاعف در g نامند هرگاه هر رأس درv(g)-s با حداقل یک رأس از s مجاور بوده و زیرگرافهای القایی g[s] و g[v-s] همبند باشند. مینیمم اندازه یک مجموعه احاطه گر همبند مضا...

15 صفحه اول

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه مازندران - دانشکده علوم پایه

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023